Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proteins ; 92(3): 356-369, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37881117

RESUMEN

The fusion of haemagglutinin-neuraminidase (HN) protein of peste des petits ruminant (PPR) virus with signaling lymphocyte activation molecules (SLAM) host cell receptor consequences the virus entry and multiplication inside the host cell. The use of synthetic SLAM homologous peptides (i.e., molecular decoy for HN protein of PPR virus) may check PPR infection at the preliminary stage. Hence, the predicted SLAM homologous peptides using bioinformatics tools were synthesized by solid phase chemistry with standard Merrifield's 9-fluorenylmethoxycarbonyl (Fmoc) chemistry and were purified by reverse phase high performance liquid chromatography. The secondary structures of synthesized peptides were elucidated by circular dichroism spectroscopy. The in vitro interactions of these peptides were studied through indirect Enzyme Linked Immuno Sorbent Assay (ELISA) and visual surface plasmon UV-visible spectroscopy. The SLAM homologous peptides were able to interact with the peste des petits ruminant virus (PPRV) with varying binding efficiency. The interaction of SLAM homologous peptide with the PPR virus was ascertained by the change in the plasmon color from red wine to purple during visual detection and also by bathochromic shift in absorbance spectra under UV-visible spectrophotometry. The cytotoxic and anti-PPRV effect of these peptides were also evaluated in B95a cell line using PPR virus (Sungri/96). The cytotoxic concentration 50 (CC50 ) value of each peptide was greater than 1000 µg mL-1 . The anti-PPRV efficiency of SLAM-22 was relatively high among SLAM homologous peptides, SLAM-22 at 25 µg mL-1 concentration showed a reduction of more than log10 3 virus titer by priming of B95a cell line while the use of SLAM-15 and Muco-17 at the same concentration dropped virus titer from log10 4.8 to log10 2.5 and log10 3.1 respectively. The concentration of SLAM homologous peptide (25 µg mL-1 ) to exert its anti-PPRV effect was much less than its CC50 level (>1000 µg mL-1 ). Therefore, the synthetic SLAM homologous peptides may prove to be better agents to target PPRV.


Asunto(s)
Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Animales , Virus de la Peste de los Pequeños Rumiantes/metabolismo , Peste de los Pequeños Rumiantes/metabolismo , Línea Celular , Proteínas Virales/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Cabras
2.
Sci Rep ; 13(1): 22583, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114542

RESUMEN

Foot-and-mouth disease (FMD) is a severe contagious viral disease of cloven-hoofed animals. In India, a vaccination-based official FMD control programme was started, which got expanded progressively to cover entire country in 2019. The serological tests are used to determine non-structural protein based sero-prevalence rates for properly implementing and assessing the control programme. Since 2008, reporting of the FMD sero-surveillance was limited to the serum sample-based serological test results without going for population-level estimation due to lack of proper statistical methodology. Thus, we present a computational approach for estimating the sero-prevalence rates at the state and national levels. Based on the reported approach, a web-application ( https://nifmd-bbf.icar.gov.in/FMDSeroSurv ) and an R software package ( https://github.com/sam-dfmd/FMDSeroSurv ) have been developed. The presented computational techniques are applied to the FMD sero-surveillance data during 2008-2021 to get the status of virus circulation in India under a strict vaccination policy. Furthermore, through various structural equation models, we attempt to establish a link between India's estimated sero-prevalence rate and field FMD outbreaks. Our results indicate that the current sero-prevalence rates are significantly associated with previous field outbreaks up to 2 years. Besides, we observe downward trends in sero-prevalence and outbreaks over the years, specifically after 2013, which indicate the effectiveness of various measures implemented under the FMD control programme. The findings of the study may help researchers and policymakers to track virus infection and identification of potential disease-free zones through vaccination.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Bovinos , Animales , Prevalencia , Anticuerpos Antivirales , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/prevención & control , Fiebre Aftosa/epidemiología , Fiebre Aftosa/prevención & control , Brotes de Enfermedades/veterinaria , India/epidemiología
3.
J Virol Methods ; 322: 114829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783396

RESUMEN

Serotype identification occupies the central part of foot and mouth disease (FMD) diagnosis workflow and vaccination decision tree. In this study, a reverse transcription-multiplex PCR (RT-mPCR) strategy wherein three assays with unique combinations of serotype specific primers targeting the VP1 region was developed to differentiate FMD virus serotypes O, A and Asia 1 based on differential size of the PCR amplicons on agarose gel. Their diagnostic performance relative to the mPCR assay in use in India was evaluated on 169 clinical samples and 210 cell culture grown virus isolates. The relative diagnostic sensitivity was found to be 99.69%, 98.78% and 99.08% for primer combinations 1, 2 and 3, respectively. These assays proved their worth by detecting serotype in three FMD suspected specimens that went undiagnosed in the existing mPCR and also by identifying multiple serotypes in the same sample. Their detection limits varied from log10 2 to log10 4 viral RNA dilution and from 100 to 0.1 TCID50 virus depending on the serotype. The validated novel mPCR assays show promise to be included in the routine diagnostic tool-box to augment the efficiency of diagnosis of FMD virus serotypes that display extreme genetic diversity and a tendency of transboundary dispersal.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Serogrupo , Transcripción Reversa , Reacción en Cadena de la Polimerasa Multiplex , Serotipificación , Sensibilidad y Especificidad , Fiebre Aftosa/diagnóstico , India , Diferenciación Celular
4.
Viruses ; 15(7)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37515215

RESUMEN

In India, widespread foot-and-mouth disease (FMD) outbreaks occurred in 2021. The objective of this study was to identify genetic lineages and evaluate the antigenic relationships of FMD virus (FMDV) isolates gathered from outbreaks reported between 2019 and 2022. Our study shows that the lineages O/ME-SA/Ind2001e and the O/ME-SA/Cluster-2018 were both responsible for the FMD outbreaks on an epidemic scale during 2021. This observation is in contrast to earlier findings that suggested epidemic-scale FMD outbreaks in India are often connected to a single genetic lineage. Additionally, we report here the identification of the O/ME-SA/PanAsia-2/ANT10 sub-lineage in India for the first time, which was connected to two intermittent outbreaks in Jammu and Kashmir. The current study demonstrates that the O/ME-SA/ind2001e lineage has a strong presence outside of the Indian subcontinent. Furthermore, the O/ME-SA/Cluster-2018 was observed to have a wider geographic distribution than previously, and like the O/ME-SA/Ind2001d and O/ME-SA/Ind2001e lineages in the past, it may eventually spread outside of its geographic niche. For O/ME-SA/Ind2001e and O/ME-SA/Cluster-2018, the predicted substitution rate for the VP1 region was 6.737 × 10-3 and 8.257 × 10-3 nt substitutions per site per year, respectively. The time of the most recent common ancestor of the O/ME-SA/Ind2001e and O/ME-SA/Cluster-2018 strains suggests that the viruses possibly emerged during 2003-2011 and 2009-2017, respectively. Recent sightings of the O/ME-SA/PanAsia2/ANT10 virus in India and the O/ME-SA/Ind2001e virus in Pakistan point to possible cross-border transit of the viruses. The results of a two-dimensional viral neutralization test revealed that all of the field isolates were antigenically matched to the currently used Indian vaccine strain O INDR2/1975. These results suggest that the serotype O vaccine strain can protect against outbreaks brought on by all three circulating lineages.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Serogrupo , Filogenia , Brotes de Enfermedades/prevención & control , India/epidemiología
5.
Virus Res ; 333: 199140, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37268276

RESUMEN

Foot and mouth disease (FMD) has engendered large scale socioeconomic crises on numerous occasions owing to its extreme contagiousness, transboundary nature, complicated epidemiology, negative impact on productivity, trade embargo, and need for intensive surveillance and expensive control measures. Emerging FMD virus variants have been predicted to have originated and spread from endemic Pool 2, native to South Asia, to other parts of the globe. In this study, 26 Indian serotype A isolates sampled between the year 2015 and 2022 were sequenced for the VP1 region. BLAST and maximum likelihood phylogeny suggest emergence of a novel genetic group within genotype 18, named here as 'A/ASIA/G-18/2019' lineage, that is restricted so far only to India and its eastern neighbour, Bangladesh. The lineage subsequent to its first appearance in 2019 seems to have displaced all other prevalent strains, in support of the phenomenon of 'genotype/lineage turnover'. It has diversified into two distinct sub-clusters, reflecting a phase of active evolution. The rate of evolution of the VP1 region for the Indian serotype A dataset was estimated to be 6.747 × 10-3 substitutions/site/year. India is implementing a vaccination centric FMD control programme. The novel lineage showed good antigenic match with the proposed vaccine candidate A IND 27/2011 when tested in virus neutralization test, while the existing vaccine strain A IND 40/2000 showed homology with only 31% of the isolates. Therefore, in order to combat this challenge of antigenic divergence, A IND 27/2011 could be the preferred strain in the Indian vaccine formulations.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Virus de la Fiebre Aftosa/genética , Serogrupo , Antígenos Virales , India/epidemiología , Filogenia
6.
J Vet Sci ; 24(3): e40, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37271508

RESUMEN

Analysis of the VP1 gene sequence of the foot and mouth disease virus (FMDV) is critical to understanding viral evolution and disease epidemiology. A standard set of primers have been used for the detection and sequence analysis of the VP1 gene of FMDV directly from suspected clinical samples with limited success. The study validated VP1-specific degenerate primer-based reverse transcription polymerase chain reaction (RT-PCR) for the qualitative detection and sequencing of serotype O FMDV lineages circulating in India. The novel degenerate primer-based RT-PCR amplifying the VP1 gene can circumvent the genetic heterogeneity observed in viruses after cell culture adaptation and facilitate precise viral gene sequence analysis from clinical samples.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Virus de la Fiebre Aftosa/genética , Serogrupo , Fiebre Aftosa/epidemiología , Serotipificación/veterinaria , Heterogeneidad Genética
7.
Curr Microbiol ; 80(8): 245, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328626

RESUMEN

A one-step TaqMan probe-based RT-qPCR assay in the duplex format simultaneously targeting FMD Virus (FMDV) 2B NSP-coding region and 18S rRNA housekeeping gene was developed and evaluated. The duplex RT-qPCR assay specifically detected FMDV genome in both infected cell culture suspensions and a variety of clinical samples such as FMD-affected tongue/feet epithelium, oral/nasal swabs, milk and oro-pharyngeal fluids. The RT-qPCR assay was found to be highly sensitive, since the assay was 105-fold more sensitive than the traditional FMDV detecting antigen-ELISA (Ag-ELISA) and 102-fold better sensitive than both virus isolation and agarose gel-based RT-multiplex PCR. In addition, the assay could detect up to 100 copies of FMDV genome per reaction. In the epithelial samples (n = 582) collected from the FMD-affected animals, the diagnostic sensitivity was 100% (95% CI 99-100%). Similarly, all the FMDV-negative samples (n = 65) tested were confirmed negative by the new RT-qPCR assay, corresponding to 100% diagnostic specificity (95% CI = 94-100%). Further, the duplex RT-qPCR assay proved to be robust, showing an inter-assay co-efficient of variations ranging from 1.4 to 3.56% for FMDV-2B gene target, and from 2 to 4.12% for 18S rRNA gene target. While analyzing FMDV-infected cell culture suspension, a fairly strong positive correlation (correlation coefficient = 0.85) was observed between 2B-based RT-qPCR and WOAH-approved 5'UTR RT-qPCR assays. Therefore, the one-step RT-qPCR assay developed here with an internal control could be used for rapid, effective, and reliable detection of FMDV in pan-serotypic manner, and has the potential for routine diagnosis of FMDV in high throughput manner.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Fiebre Aftosa/diagnóstico , Virus de la Fiebre Aftosa/genética , Sensibilidad y Especificidad , Serogrupo , Reacción en Cadena de la Polimerasa Multiplex
8.
J Virol Methods ; 318: 114754, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37230193

RESUMEN

Early and definitive disease diagnosis is critical for effective disease control. 50% buffered glycerine is commonly used viral transport medium, which is not always available and required cold chain. Tissues samples archived in 10% neutral buffered formalin (NBF) can preserve nucleic acid that can be used in molecular studies and disease diagnosis. The present study's goal was to detect the foot-and-mouth disease (FMD) viral genome in formalin-fixed archived tissue which may avoid cold chain during transportation. This study used FMD suspected samples preserved in 10% neutral buffered formalin from 0 to 730 days post fixation (DPF). All archived tissues were positive for FMD viral genome by multiplex RT-PCR and RT-qPCR up to 30 DPF, whereas archived epithelium tissues and thigh muscle were positive for FMD vial genome up to 120 DPF. FMD viral genome was detected in cardiac muscle up to 60 DPF and 120 DPF, respectively. The findings suggest that 10% neutral buffered formalin could be used for sample preservation and transportation for timely and accurate FMD diagnosis. More samples need to be tested before implementing the use of 10% neutral buffered formalin as a preservative and transportation medium. The technique may add value in ensuring biosafety measures for creation during disease free zone as well.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Fiebre Aftosa/diagnóstico , Formaldehído , Virus de la Fiebre Aftosa/genética
9.
Vet Res Commun ; 47(4): 1915-1924, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37222940

RESUMEN

Foot-and-mouth disease (FMD) is endemic in India with a majority of outbreaks caused by FMD virus (FMDV) serotype O. In the present study a panel of eight (2F9, 2G10, 3B9, 3H5, 4C8, 4D6, 4G10 and 5B6) mouse monoclonal antibodies (MAbs) were developed against FMDV serotype O Indian vaccine strain, O/IND/R2/75 via hybridoma systems. The MAbs generated were FMDV/O specific without cross-reactivity against FMDV type A and Asia 1. All the MAbs were identified as IgG1/kappa type. Out of eight, three MAbs (3B9, 3H5 and 4G10) demonstrated virus neutralizing activity. The reactivity of all MAbs increased with heat treated (@560C) serotype O antigen compared to untreated antigen in sandwich ELISA indicating that their binding epitopes are linear. Six MAbs (except 2F9 and 4D6) reacted with recombinant P1 protein of homologous virus in an indirect ELISA among which only MAb 3B9 bound to VP1. MAb profiling of 37 serotype O field viruses isolated between the years 1962 and 2021 demonstrated antigenic similarity between field isolates and reference vaccine strain. MAbs 5B6 and 4C8 consistently reacted with all 37 isolates. In indirect immunofluorescence assay MAb 5B6 bound well with FMDV/O antigen. Finally, a sandwich ELISA was successfully developed using rabbit polyclonal anti-FMDV/O serum and MAb 5B6 for detection of FMDV/O antigen in clinical samples (n = 649). The new assay exhibited 100% and 98.89% diagnostic sensitivity and specificity respectively compared to traditional polyclonal antibody-based sandwich ELISA suggesting that the MAb-based ELISA developed here could be an effective method for detection of FMDV serotype O.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas , Ratones , Animales , Conejos , Anticuerpos Monoclonales , Serogrupo , Antígenos O , Fiebre Aftosa/diagnóstico , Ensayo de Inmunoadsorción Enzimática/veterinaria , Anticuerpos Antivirales
10.
Vet Res Commun ; 46(4): 1011-1022, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36190601

RESUMEN

Foot-and-mouth disease (FMD) is a major disease of livestock in India and causes huge economic losses. The formal FMD control program started in 2003-04 in selected districts and was gradually expanded. The present study provides a descriptive review of the FMD outbreaks, prevalent serotypes, and genetic and antigenic features of the FMD virus (FMDV) that circulated in the country between 2011 and 2020. FMD outbreaks were regularly reported in cloven-hoofed domestic livestock and wildlife, with three serotypes including O, A, and Asia1. During the study period, a total of 2226 FMD outbreaks were documented and serotypes confirmed. FMDV serotype O dominated the outbreak scenario, accounting for about 92% of all outbreaks, followed by Asia1 (5% of all outbreaks) and A (3% of all outbreaks). Two major epidemics of FMD on an unprecedented scale during the years 2013 and 2018 by serotype O were recorded. The spatial distribution of FMD was characterized by a larger number of outbreaks in the southern region of the country. In an annual-scale analysis, 2020 was the year with the lowest outbreaks, and 2013 was the year with the highest. The month-scale analysis showed that outbreaks were reported throughout the year, with the highest numbers between October and March. The emergence of three major lineages (O/ME-SA/Ind2001d, O/ME-SA/Ind2001e, and O/ME-SA/Ind2018) of serotype O was observed during the period. In the cases of serotype A and Asia1, the appearance of at least one novel lineage/genetic group, including A/G-18/non-deletion/2019 and Asia1/Group-IX, was documented. While serotype A showed the advent of antigenic variants, serotypes O and Asia1 did not show any antigenic diversity. It was noticed during the course of an outbreak that animal movement contributes significantly to disease transmission. Except for 2018, when numerous FMD outbreaks were recorded, the number of annual outbreaks reported after 2016 has been lower than in the first half of the decade, probably due to mass vaccination and COVID-19 pandemic-linked movement restrictions. Even during outbreaks, disease symptoms in ruminant populations, including cattle, were found to be less severe. Regular six-monthly immunization certainly has a positive impact on the reduction of disease burden and should be followed without fail and delay, along with intensive disease surveillance.


Asunto(s)
COVID-19 , Enfermedades de los Bovinos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Bovinos , Animales , Fiebre Aftosa/epidemiología , Fiebre Aftosa/prevención & control , Pandemias , COVID-19/veterinaria , Virus de la Fiebre Aftosa/genética , Brotes de Enfermedades/veterinaria , Serogrupo , Rumiantes , Filogenia
11.
Biologicals ; 79: 19-26, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36096853

RESUMEN

Canine morbillivirus is a highly contagious multi-host pathogen with high morbidity and mortality. Timely diagnosis is of utmost importance to effectively control such a dreadful disease. Monoclonal antibodies (mAbs) serve as a high throughput diagnostics and applied tools for research and development (R&D). In the present study, a total of six mouse monoclonal antibodies were developed. All the mAbs generated belonged to IgG class. Of the six mAbs, two of them, namely CD-2F8 and CD-3D8 were directed against the nucleocapsid protein of CDV as determined in western blotting. The reactivity of all the mAbs was checked in indirect-ELISA and cell-ELISA using different morbilliviruses. The mAbs could broadly be categorized as; CDV specific (CD-3D8 and CD-2F8), cross-reactive to PPR virus (CD-AB3 and CD-4D6) and cross-reactive to both PPR virus and measles virus (CD-5D10 and CD-6E5). The characterized mAbs were used for antigenic profiling of CDV, PPR virus and measles virus. Based on the reactivity pattern; a close antigenic relationship was found among CDV and PPR virus as compared to measles virus. A pair of CDV specific mAbs namely CD-2F8 and CD-3D8 were identified which did not cross-react with measles and PPR viruses and thus could be used for diagnostic applications.


Asunto(s)
Anticuerpos Monoclonales , Virus del Moquillo Canino , Animales , Anticuerpos Monoclonales/química , Virus del Moquillo Canino/inmunología , Perros , Inmunoglobulina G , Virus del Sarampión/inmunología , Ratones , Proteínas de la Nucleocápside , Virus de la Peste de los Pequeños Rumiantes/inmunología
12.
Virusdisease ; 33(3): 309-321, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36039286

RESUMEN

The increasing host range of canine morbillivirus (CDV) affecting important wildlife species such as Lions, Leopard, and Red Pandas has raised the concern. Canine distemper is a pathogen of dogs affecting the respiratory, gastrointestinal, and nervous systems. Seventeen lineages of CDV are reported, and the eighteenth lineage was proposed in 2019 from India. Marked genomic differences in the genome of wild-type virus and vaccine strain are also reported.The variations at the epitope level can be differentiated using specific monoclonal antibodies in neutralization tests. Keeping in mind the current status of the emergence of CDV, genetic and molecular study of circulating strains of the specific geographical region are the essential components of the disease control strategy. New target-based diagnostics and vaccines are in need to counter the effects of the emerging virus population. Control of CDV is necessary to save the endangered, vulnerable, and many other wildlife species to maintain balance in the ecological system. This review provides an overview on emergence reported in CDV, diagnostics developed till today, and a perspective on the disease control strategy, keeping wildlife in consideration.

13.
Transbound Emerg Dis ; 69(5): e1936-e1950, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35306749

RESUMEN

Foot-and-mouth disease (FMD) is endemic in India, where circulation of serotypes O, A and Asia1 is frequent. Here, we provide an epidemiological assessment of the ongoing mass vaccination programs in regard to post-vaccination monitoring and outbreak occurrence. The objective of this study was assessing the contribution of mass vaccination campaigns in reducing the risk of FMD in India from 2008 to 2016 by evaluating sero-monitoring data and modelling the spatiotemporal dynamics of reported outbreaks. Through analyzing antibody titre data from >1 million animals sampled as part of pre- and post-vaccination monitoring, we show that the percent of animals with inferred immunological protection (based on ELISA) was highly variable across states but generally increased through time. In addition, the number of outbreaks in a state was negatively correlated with the percent of animals with inferred protection. We then analyzed the distribution of reported FMD outbreaks across states using a Bayesian space-time model. This approach provides better acuity to disentangle the effect of mass vaccination programs on outbreak occurrence, while accounting for other factors that contribute to spatiotemporal variability in outbreak counts, notably proximity to international borders and inherent spatiotemporal correlations in incidence. This model demonstrated a ∼50% reduction in the risk of outbreaks in states that were part of the vaccination program. In addition, after controlling for spatial autocorrelation in the data, states that had international borders experienced heightened risk of FMD outbreaks. These findings help inform risk-based control strategies for India as the country progresses towards reducing reported clinical disease.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Teorema de Bayes , Bovinos , Enfermedades de los Bovinos/epidemiología , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/veterinaria , Fiebre Aftosa/epidemiología , Fiebre Aftosa/prevención & control , Vacunación Masiva/veterinaria , Vacunación/veterinaria
14.
Virus Genes ; 58(2): 113-121, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34988898

RESUMEN

Rapid, sensitive, and reliable laboratory detection of foot-and-mouth disease virus (FMDV) infection is essential for containing and controlling virus infection in any geographical area. In this report a SYBR green-based 3Dpol-specific one-step real-time RT-PCR (rRT-PCR) assay was developed for the pan-serotype detection of FMDV in India. The detection limit of the SYBR green-based rRT-PCR was 10-2 TCID50/50 µl, which is 10 times more sensitive than the traditional agarose gel electrophoresis-based RT-multiplex PCR (RT-mPCR). The standard curve exhibited a linear range across 8-log10 units of viral RNA dilution. The reproducibility and specificity of this assay were reasonably high suggesting that the 3Dpol-specific SYBR green rRT-PCR could detect FMDV genome specifically and with little run-to-run variation. The new 3Dpol-specific SYBR green rRT-PCR assay was evaluated alongside the established RT-mPCR using the archived FMDV isolates and clinical field samples from suspected FMD outbreaks. A perfect concordance was observed between the new rRT-PCR and the traditional RT-mPCR on viral RNA in the archived FMDV cell culture isolates tested. Furthermore, 73% of FMDV-suspected clinical samples were detected positive through the 3Dpol-specific SYBR green rRT-PCR, while the detection rate through the traditional RT-mPCR was 57%. Therefore, the SYBR green-based 3Dpol-specific one-step rRT-PCR could be considered as a valuable assay with higher diagnostic sensitivity to complement the routine assays that are being used for FMD virus diagnosis in India.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Benzotiazoles , Diaminas , Fiebre Aftosa/diagnóstico , Virus de la Fiebre Aftosa/genética , Quinolinas , ARN Viral/análisis , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sensibilidad y Especificidad
15.
Microb Pathog ; 156: 104940, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33962006

RESUMEN

Cellular receptors play an important role in entry and cell to cell spread of morbillivirus infections. The cells expressing SLAM and Nectin-4 have been used for successful and efficient isolation of canine distemper virus (CDV) in high titre. There are several methods for generation of cells expressing receptor molecules. Here, we have used a comparatively cheaper and easily available method, pcDNA 3.1 (+) for engineering Vero cells to express SLAM gene of goat, sheep and dog origin (Vero/Goat/SLAM (VGS), Vero/Sheep/SLAM (VSS) and Vero/Dog/SLAM (VDS), respectively). The generated cell lines were then compared to test their efficacy to support CDV replication. CDV could be grown in high titre in the cells expressing SLAM and a difference of log two could be recorded in virus titre between VDS and native Vero cells. Also, CDV could be grown in a higher titre in VDS as compared to VGS and VSS. The finding of this study supports the preferential use of SLAM expressing cells over the native Vero cells by CDV. Further, the higher titre of CDV in cells expressing dog-SLAM as compared to the cells expressing SLAM of non-CDV hosts (i.e. goat and sheep) points towards the preferential use of dog SLAM by the CDV and may be a plausible reason for differential susceptibility of small ruminants and Canines to CDV.


Asunto(s)
Virus del Moquillo Canino , Moquillo , Animales , Antígenos CD , Línea Celular , Chlorocebus aethiops , Virus del Moquillo Canino/genética , Perros , Cabras , Activación de Linfocitos , Ovinos , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Células Vero
16.
J Microbiol Methods ; 184: 106185, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33684449

RESUMEN

The widely used serodiagnostic test (RBPT, CFT, I-ELISA and FPA) for diagnosis of brucellosis cannot detect vertically infected or carrier animals that are seronegative, a persistent source of infection to other susceptible animals in the herd. For reducing transmission of disease within the herd, these animals must be detected using a rapid, sensitive, user friendly penside diagnostic test. In the present study, Lateral Flow immunoassay (LFA) strip test was developed for detection of Brucellaspp. from clinical samples (bovine aborted foetal stomach contents). The LFA strip was fabricated by printing anti-Brucella polyclonal antibodies (PAb) and anti-bovine antibodies IgG on test and control line, respectively. For conjugation, colloidal gold nanoparticles (30 nm GNP, Sigma, USA) were conjugated with anti-brucella PAb. The LFA strip test was able to detect 107 cfu/ml B.abortus S99 inactivated organism in PBS and it did not exhibit any cross reactivity with selected non Brucella pathogens. To further validate, 115 clinical specimens were tested using LFA strip test. The relative sensitivity (DSn) and relative specificity (DSp) of LFA strip test was determined by ROC curve analysis using PCR and culture method as reference standard. DSn and DSp of LFA strip test was observed as 78.57% (95%CI: 49.2-95.3); 93.07% (95%CI: 86.2-97.2) and 80.0% (95%CI:51.9-95.7); 94.0% (95%CI:0.795-0.925) using culture and PCR as reference diagnostic tests, respectively. It may be concluded that, the LFA strip test can be used as a rapid penside diagnostic test for screening of brucellosis. To the best of our knowledge, this is the first report on development of GNP based LFA strip test for detection of Brucella spp. from bovine aborted fetal content samples.


Asunto(s)
Brucella/aislamiento & purificación , Brucelosis/veterinaria , Enfermedades de los Bovinos/diagnóstico , Inmunoensayo/métodos , Animales , Anticuerpos Antibacterianos/análisis , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/análisis , Antígenos Bacterianos/inmunología , Brucella/genética , Brucella/inmunología , Brucelosis/diagnóstico , Brucelosis/microbiología , Bovinos , Enfermedades de los Bovinos/microbiología , Inmunoensayo/instrumentación , Nanopartículas del Metal/química , Sensibilidad y Especificidad
17.
Virusdisease ; 31(3): 357-368, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32904760

RESUMEN

Vaccination is the most effective means of preventing Peste-des-petits-ruminants (PPR), an important disease of small ruminant population. The thermolabile nature of PPR vaccine poses a major constraint in shipping, storage and its successful application. In view of limited thermotolerance of PPR virus and ongoing global PPR control and eradication program, development of a thermotolerant PPR vaccine was tried using a novel lyophilization protocol and improved thermostabilization. A lyophilization cycle of 16 h (h) using 200 µl of PPR vaccine virus (stock titre 5.8 log10 TCID50/vial in 200 µl) was developed. For this, five stabilizer formulations were selected out of ten formulations based on the stability of liquid vaccine at 37 °C and three freeze-thaw cycles. Improved thermostabilization of PPR vaccines was obtained by inclusion of 5% trehalose and 0.5% gelatine to Lactalbumin hydrolysate-sucrose (LS) formulations which significantly improved the stability of lyophilized vaccines with a shelf-life of at least 1305.3 days at 2-8 °C, 23.68 days at 25 °C, 20.88 days at 37 °C, 5.01 days at 40 °C and 3.22 days at 45 °C which qualifies the standards of a thermotolerant PPR vaccine as defined by the FAO and OIE. In reconstituted vaccines, the combination of LS, trehalose and gelatin (LSTG) provided a shelf-life of 1.77 days at 37 °C, 22.41 h at 40 °C and 10.05 h at 45 °C. The study suggested that use of the short lyophilization protocol standardized with 200 µl of lyophilized PPR vaccine stabilized with LSTG formulation, can be used to develop and upscale thermotolerant PPR vaccines during national and global PPR control and eradication as targeted by the FAO and OIE by 2030.

18.
Biologicals ; 62: 57-64, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31588012

RESUMEN

The present investigation deals with the characterization of defective interfering (DI) particles of Peste-des-petits ruminants (PPR) vaccine Sungri/96 strain generated as a result of high MOI in Vero cells. During the serial 10 passages, infectivity titres drastically reduced from 6.5 to 2.25 log10TCID50/ml at high MOI. Further, attenuation of CPE with high MOI indicated generation of DI particles that resulted in no/slow progression of CPE during the late passages. Monoclonal antibody based cell ELISA indicated normal protein (N & H) packaging in samples with DI activity. At genomic level, inconsistency in amplicon intensity of H gene was observed in RT-PCR, indicating a possible defect of H gene. Further analysis of copy number of PPRV by RT-qPCR indicated intermittent fluctuations of viral genomic RNA copies. The significant decline of viral RNA copies with MOI 3 (314 copies) compared to low MOI (512804 copies), proved that higher DI multiplicities cause more interference with the replication process of the standard virus. Therefore, MOI is critical for manufacturing of vaccines. These investigations will help in upscaling of PPR vaccines in view of ongoing National and Global PPR control and eradication programme.


Asunto(s)
Virus Defectuosos , Genoma Viral , Virus de la Peste de los Pequeños Rumiantes , ARN Viral , Vacunas Virales , Animales , Anticuerpos Monoclonales de Origen Murino/inmunología , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Virus Defectuosos/genética , Virus Defectuosos/inmunología , Virus de la Peste de los Pequeños Rumiantes/genética , Virus de la Peste de los Pequeños Rumiantes/crecimiento & desarrollo , ARN Viral/genética , ARN Viral/inmunología , Células Vero , Vacunas Virales/genética , Vacunas Virales/inmunología
19.
Can J Microbiol ; 65(11): 783-794, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31238018

RESUMEN

SLAM (CD150) and nectin-4 are the major morbillivirus receptors responsible for virus pathogenesis and host range expansion. Recently, morbillivirus infections have been reported in unnatural hosts, including endangered species, posing a threat to their conservation. To understand the host range expansion of morbilliviruses, we generated the full-length sequences of morbillivirus receptors (goat, sheep, and dog SLAM, and goat nectin-4) and tried to correlate their role in determining host tropism. A high level of amino acid identity was observed between the sequences of related species, and phylogenetic reconstruction showed that the receptor sequences of carnivores, marine mammals, and small ruminants grouped separately. Analysis of the ligand binding region (V region; amino acid residues 52-136) of SLAM revealed high amino acid identity between small ruminants and bovine SLAMs. Comparison of canine SLAM with ruminants and non-canids SLAM revealed appreciable changes, including charge alterations. Significant differences between feline SLAM and canine SLAM have been reported. The binding motifs of nectin-4 genes (FPAG motif and amino acid residues 60, 62, and 63) were found to be conserved in sheep, goat, and dog. The differences reported in the binding region may be responsible for the level of susceptibility or resistance of a species to a particular morbillivirus.


Asunto(s)
Mamíferos/genética , Infecciones por Morbillivirus/veterinaria , Morbillivirus/fisiología , Receptores Virales/genética , Secuencia de Aminoácidos , Animales , Gatos/genética , Bovinos/genética , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Perros/genética , Cabras/genética , Especificidad del Huésped , Mamíferos/clasificación , Mamíferos/virología , Morbillivirus/genética , Infecciones por Morbillivirus/genética , Infecciones por Morbillivirus/metabolismo , Infecciones por Morbillivirus/virología , Filogenia , Receptores Virales/química , Alineación de Secuencia , Análisis de Secuencia , Ovinos/genética , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/química , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética
20.
Virusdisease ; 29(4): 520-530, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30539056

RESUMEN

The available vaccines for control of Peste des petits ruminants do not favour differentiation of infected and vaccinated animals (DIVA). Hence, the present study was aimed to isolate and characterize monoclonal antibody resistant mutant of an Indian strain of vaccine virus "PPRV-Sungri/96" under selection pressure of virus neutralizing monoclonal antibody '4B11' specific to haemagglutinin (H) protein. We successfully isolated five monoclonal antibody resistant (mAr) mutants (PPRV-RM5, PPRV-RM6, PPRV-RM7, PPRV- E6 and PPRV- E7). The mAr mutants did not react with the anti-H mAb 4B11 whereas reacted with control anti-nucleoprotein mAb 4G6, similar to the parent vaccine virus "PPRV-Sungri/96" in indirect ELISA, cell ELISA and indirect immunofluorescence test. Cytometry analysis of mAr mutants revealed loss of binding to mAb 4B11 while maintaining binding to mAb 4G6, more or less similar to "PPRV-Sungri/96". The sequence analysis of the H-protein gene of the mAr mutants resulted in identification of two nucleotide changes leading to amino acid substitutions at position 263 and 502 (L263P and R502P) of the H protein indicating that the epitope of mAb 4B11 could be conformational in nature. Though, mAr mutant grew to a similar titre as parent vaccine virus (PPRV-Sungri/96), the in vivo work in goats to study the mAr mutant as possible negative marker vaccine candidate could not be successfully proved with mAb 4B11 based competitive ELISA. However, one of the nucleotide change (T-C) at position 788, unique to mAr mutant virus resulted in abolition of a restriction enzyme recognition site (BglII). This could be used to differentiate mAr mutant vaccine virus from other available vaccine and field strains using restriction fragment length polymorphism. However, the mAr mutant PPRV-E6 cannot be used as a candidate strain for DIVA vaccine as immune response against it cannot be differentiated based on serology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...